Gerald Maurice Edelman
(July 1, 1929 – May 17, 2014) was an American biologist who shared the 1972 Nobel Prize in Physiology or Medicine for work with Rodney Robert Porter on the immune system. Edelman's Nobel Prize-winning research concerned discovery of the structure of antibody molecules. In interviews, he has said that the way the components of the immune system evolve over the life of the individual is analogous to the way the components of the brain evolve in a lifetime. There is a continuity in this way between his work on the immune system, for which he won the Nobel Prize, and his later work in neuroscience and in philosophy of mind.
(July 1, 1929 – May 17, 2014) was an American biologist who shared the 1972 Nobel Prize in Physiology or Medicine for work with Rodney Robert Porter on the immune system. Edelman's Nobel Prize-winning research concerned discovery of the structure of antibody molecules. In interviews, he has said that the way the components of the immune system evolve over the life of the individual is analogous to the way the components of the brain evolve in a lifetime. There is a continuity in this way between his work on the immune system, for which he won the Nobel Prize, and his later work in neuroscience and in philosophy of mind.
After a year at the Johnson Foundation for Medical Physics, Edelman became a resident at the Massachusetts General Hospital; he then practiced medicine in France while serving with US Army Medical Corps. In 1957, Edelman joined the Rockefeller Institute for Medical Research as a graduate fellow, working in the laboratory of Henry Kunkel and receiving a Ph.D. in 1960. The institute made him the Assistant (later Associate) Dean of Graduate Studies; he became a professor at the school in 1966. In 1992, he moved to California and became a professor of neurobiology at The Scripps Research Institute.
After his Nobel prize award, Edelman began research into the regulation of primary cellular processes, particularly the control of cell growth and the development of multi-celled organisms, focusing on cell-to-cell interactions in early embryonic development and in the formation and function of the nervous system. These studies led to the discovery of cell adhesion molecules (CAMs), which guide the fundamental processes that help an animal achieve its shape and form, and by which nervous systems are built. One of the most significant discoveries made in this research is that the precursor gene for the neural cell adhesion molecule gave rise in evolution to the entire molecular system of adaptive immunity.
While in Paris serving in the Army, Edelman read a book that sparked his interest in antibodies. He decided that, since the book said so little about antibodies, he would investigate them further upon returning to the United States, which led him to study physical chemistry for his 1960 Ph.D. Research by Edelman and his colleagues and Rodney Robert Porter in the early 1960s produced fundamental breakthroughs in the understanding of the antibody's chemical structure, opening a door for further study. For this work, Edelman and Porter shared the Nobel Prize in Physiology or Medicine in 1972.
In its Nobel Prize press release in 1972, the Karolinska Institutet lauded Edelman and Porter's work as a major breakthrough:
| "The impact of Edelman's and Porter's discoveries is explained by the fact that they provided a clear picture of the structure and mode of action of a group of biologically particularly important substances. By this they laid a firm foundation for truly rational research, something that was previously largely lacking in immunology. Their discoveries represent clearly a break-through that immediately incited a fervent research activity the whole world over, in all fields of immunological science, yielding results of practical value for clinical diagnostics and therapy. |
No comments:
Post a Comment