Monday, 18 May 2015

18-MAY-1850 :- BIRTH OF Oliver Heaviside, English engineer, mathematician, mathematical techniques for the solution of differential equations.

Oliver Heaviside
(18 May 1850 – 3 February 1925) was a self-taught English electrical engineer,mathematician, and physicist who adapted complex numbers to the study of electrical circuits, invented mathematical techniques for the solution of differential equations (later found to be equivalent to Laplace transforms), reformulated Maxwell's field equations in terms of electric and magnetic forces and energy flux, and independently co-formulated vector analysis. Although at odds with the scientific establishment for most of his life, Heaviside changed the face of telecommunications, mathematics, and science for years to come.
Heaviside did much to develop and advocate vector methods and the vector calculusMaxwell's formulation of electromagnetism consisted of 20 equations in 20 variables. Heaviside employed the curl and divergence operators of the vector calculus to reformulate 12 of these 20 equations into four equations in four variables (BEJ, and ρ), the form by which they have been known ever since (see Maxwell's equations). Less well known is that Heaviside's equations and Maxwell's are not exactly the same, and in fact it is easier to modify the latter to make them compatible with quantum physics.
He invented the Heaviside step function and employed it to model the current in an electric circuit. He invented the operator method for solving linear differential equations, which resembles current Laplace transform methods . The UK mathematician Thomas John I'Anson Bromwichlater devised a rigorous mathematical justification for Heaviside's operator method.
Heaviside advanced the idea that the Earth's uppermost atmosphere contained an ionized layer known as the ionosphere; in this regard, he predicted the existence of what later was dubbed the Kennelly–Heaviside layer. In 1945 Edward Victor Appleton received the Nobel Prize in Physics for proving that this layer really existed. Heaviside developed the transmission line theory (also known as the "telegrapher's equations"), which had the effect of increasing the transmission rate over transatlantic cables by a factor of ten. It originally took ten minutes to transmit each character, and this immediately improved to one character per minute. Closely related to this was his discovery that telephone transmission could be greatly improved by placing electrical inductance in series with the cable. Heaviside also independently discovered the Poynting vector.

No comments:

Post a Comment